一、Fork-Join框架 1、分而治之 规模为N的问题,N<阈值,直接解决,N>阈值,将N分解为K个小规模子问题,子问题互相对立,与原问题形式相同,将子问题的解合并得到原问题的解 动态规范 2、工
一、Fork-Join框架
1、分而治之
规模为N的问题,N<阈值,直接解决,N>阈值,将N分解为K个小规模子问题,子问题互相对立,与原问题形式相同,将子问题的解合并得到原问题的解
动态规范
2、工作密取 workStealing
就是在任务分割的时候,前面的任务执行可能会比后面的执行速度快,当前面的执行完,后面的还没执行的时候,执行完前面的任务的线程不会停止,而是从后面的任务的尾部取出子任务继续工作。Fork-Join就是实现了这样的机制。
Fork/Join使用的标准范式
代码如下:
import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveTask;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class SumArray { private static class SumTask extends RecursiveTask<Integer>{ private final static int THRESHOLD = MakeArray.ARRAY_LENGTH/10; private int[] src; //表示我们要实际统计的数组 private int fromIndex;//开始统计的下标 private int toIndex;//统计到哪里结束的下标 public SumTask(int[] src, int fromIndex, int toIndex) { this.src = src; this.fromIndex = fromIndex; this.toIndex = toIndex; } @Override protected Integer compute() { if(toIndex-fromIndex < THRESHOLD) { int count = 0; for(int i=fromIndex;i<=toIndex;i++) { //SleepTools.ms(1); count = count + src[i]; } return count; }else { //fromIndex....mid....toIndex //1...................70....100 int mid = (fromIndex+toIndex)/2; SumTask left = new SumTask(src,fromIndex,mid); SumTask right = new SumTask(src,mid+1,toIndex); invokeAll(left,right); return left.join()+right.join(); } } } public static void main(String[] args) { ForkJoinPool pool = new ForkJoinPool(); int[] src = MakeArray.makeArray(); SumTask innerFind = new SumTask(src,0,src.length-1); long start = System.currentTimeMillis(); pool.invoke(innerFind);//同步调用 System.out.println("Task is Running....."); System.out.println("The count is "+innerFind.join() +" spend time:"+(System.currentTimeMillis()-start)+"ms"); }}public class MakeArray { //数组长度 public static final int ARRAY_LENGTH = 100000000; public static int[] makeArray() { //new一个随机数发生器 Random r = new Random(); int[] result = new int[ARRAY_LENGTH]; for(int i=0;i<ARRAY_LENGTH;i++){ //用随机数填充数组 result[i] = r.nextInt(ARRAY_LENGTH*3); } return result; }}
二、常用的并发工具类
1、CountDownLatch
作用:是一组线程等待其他的线程完成工作以后在执行,加强版join
await用来等待,countDown负责计数器的减一
代码示例:
import java.util.concurrent.CountDownLatch;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class UseCountDownLatch { static CountDownLatch latch = new CountDownLatch(6); //初始化线程(只有一步,有4个) private static class InitThread implements Runnable{ @Override public void run() { System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work......"); latch.countDown();//初始化线程完成工作了,countDown方法只扣减一次; for(int i =0;i<2;i++) { System.out.println("Thread_"+Thread.currentThread().getId() +" ........continue do its work"); } } } //业务线程 private static class BusiThread implements Runnable{ @Override public void run() { try { latch.await(); } catch (InterruptedException e) { e.printStackTrace(); } for(int i =0;i<3;i++) { System.out.println("BusiThread_"+Thread.currentThread().getId() +" do business-----"); } } } public static void main(String[] args) throws InterruptedException { //单独的初始化线程,初始化分为2步,需要扣减两次 new Thread(new Runnable() { @Override public void run() { SleepTools.ms(1); //休眠1s System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work step 1st......"); latch.countDown();//每完成一步初始化工作,扣减一次 System.out.println("begin step 2nd......."); SleepTools.ms(1); System.out.println("Thread_"+Thread.currentThread().getId() +" ready init work step 2nd......"); latch.countDown();//每完成一步初始化工作,扣减一次 } }).start(); new Thread(new BusiThread()).start(); for(int i=0;i<=3;i++){ Thread thread = new Thread(new InitThread()); thread.start(); } latch.await(); System.out.println("Main do ites work........"); }}
2、CyclicBarrier
让一组线程达到某个屏障,被阻塞,一直到组内最后一个线程达到屏障时,屏障开放,所有被阻塞的线程会继续运行CyclicBarrier(int parties)
CyclicBarrier(int parties, Runnable barrierAction),屏障开放,barrierAction定义的任务会执行
代码示例:
import java.util.Map;import java.util.Random;import java.util.concurrent.ConcurrentHashMap;import java.util.concurrent.CyclicBarrier;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class UseCyclicBarrier { private static CyclicBarrier barrier = new CyclicBarrier(5,new CollectThread()); private static ConcurrentHashMap<String,Long> resultMap = new ConcurrentHashMap<>();//存放子线程工作结果的容器 public static void main(String[] args) { for(int i=0;i<=4;i++){ Thread thread = new Thread(new SubThread()); thread.start(); } } //负责屏障开放以后的工作 private static class CollectThread implements Runnable{ @Override public void run() { StringBuilder result = new StringBuilder(); for(Map.Entry<String,Long> workResult:resultMap.entrySet()){ result.append("["+workResult.getValue()+"]"); } System.out.println(" the result = "+ result); System.out.println("do other business........"); } } //工作线程 private static class SubThread implements Runnable{ @Override public void run() { long id = Thread.currentThread().getId();//线程本身的处理结果 resultMap.put(Thread.currentThread().getId()+"",id); Random r = new Random();//随机决定工作线程的是否睡眠 try { if(r.nextBoolean()) { Thread.sleep(2000+id); System.out.println("Thread_"+id+" ....do something "); } System.out.println(id+"....is await"); barrier.await(); Thread.sleep(1000+id); System.out.println("Thread_"+id+" ....do its business "); } catch (Exception e) { e.printStackTrace(); } } }}
CountDownLatch和CyclicBarrier辨析
1、countdownlatch放行由第三者控制,CyclicBarrier放行由一组线程本身控制
2、countdownlatch放行条件》=线程数,CyclicBarrier放行条件=线程数
3、Semaphore
控制同时访问某个特定资源的线程数量,用在流量控制
import java.sql.Connection;import java.util.LinkedList;import java.util.concurrent.Semaphore;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class DBPoolSemaphore { private final static int POOL_SIZE = 10; private final Semaphore useful,useless;//useful表示可用的数据库连接,useless表示已用的数据库连接 public DBPoolSemaphore() { this. useful = new Semaphore(POOL_SIZE); this.useless = new Semaphore(0); } //存放数据库连接的容器 private static LinkedList<Connection> pool = new LinkedList<Connection>(); //初始化池 static { for (int i = 0; i < POOL_SIZE; i++) { pool.addLast(SqlConnectImpl.fetchConnection()); } } /*归还连接*/ public void returnConnect(Connection connection) throws InterruptedException { if(connection!=null) { System.out.println("当前有"+useful.getQueueLength()+"个线程等待数据库连接!!" +"可用连接数:"+useful.availablePermits()); useless.acquire(); synchronized (pool) { pool.addLast(connection); } useful.release(); } } /*从池子拿连接*/ public Connection takeConnect() throws InterruptedException { useful.acquire(); Connection conn; synchronized (pool) { conn = pool.removeFirst(); } useless.release(); return conn; } }
4、Exchange
两个线程间的数据交换, 用的比较少
代码示例:
import java.util.ArrayList;import java.util.HashSet;import java.util.List;import java.util.Set;import java.util.concurrent.Exchanger;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class UseExchange { private static final Exchanger<Set<String>> exchange = new Exchanger<Set<String>>(); public static void main(String[] args) { //第一个线程 new Thread(new Runnable() { @Override public void run() { Set<String> setA = new HashSet<String>();//存放数据的容器 try { /*添加数据 * set.add(.....) * */ setA = exchange.exchange(setA);//交换set /*处理交换后的数据*/ } catch (InterruptedException e) { } } }).start(); //第二个线程 new Thread(new Runnable() { @Override public void run() { Set<String> setB = new HashSet<String>();//存放数据的容器 try { /*添加数据 * set.add(.....) * set.add(.....) * */ setB = exchange.exchange(setB);//交换set /*处理交换后的数据*/ } catch (InterruptedException e) { } } }).start(); }}
5、Callable、Future和FutureTask
类之间的关系
isDone,结束,正常还是异常结束,或者自己取消,返回true;
isCancelled 任务完成前被取消,返回true;
cancel(boolean):
- 任务还没开始,返回false
- 任务已经启动,cancel(true),中断正在运行的任务,中断成功,返回true,cancel(false),不会去中断已经运行的任务
- 任务已经结束,返回false
代码示例:
import java.util.Random;import java.util.concurrent.Callable;import java.util.concurrent.ExecutionException;import java.util.concurrent.FutureTask;/** * @Auther: BlackKingW * @Date: 2019/4/14 12:09 * @Description: */public class UseFuture { /*实现Callable接口,允许有返回值*/ private static class UseCallable implements Callable<Integer>{ private int sum; @Override public Integer call() throws Exception { System.out.println("Callable子线程开始计算"); Thread.sleep(2000); for(int i=0;i<5000;i++) { sum = sum+i; } System.out.println("Callable子线程计算完成,结果="+sum); return sum; } } public static void main(String[] args) throws InterruptedException, ExecutionException { UseCallable useCallable = new UseCallable(); FutureTask<Integer> futureTask = new FutureTask<Integer>(useCallable); new Thread(futureTask).start(); Random r = new Random(); SleepTools.second(1); if(r.nextBoolean()) {//随机决定是获得结果还是终止任务 System.out.println("Get UseCallable result = "+futureTask.get()); }else { System.out.println("中断计算"); futureTask.cancel(true); } }}
场景举例:包含图片和文字的文档的处理:图片(云上),可以用future去取图片,主线程继续解析文字。